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ABSTRACT: In this paper, an attempt has been made to investigate three dimensional transient 

thermoelastic problem of a thin rectangular plate due to partially distributed heat supply to determine 

temperature distribution, displacement and thermal stresses with the known boundary and initial conditions. 
The solutions are obtained by applying the Marchi-Fasulo transform and the Laplace transform techniques. 

The results are obtained in series form in terms of Bessel’s functions. Some numerical results for the 

temperature change, the displacement, and the stress distributions are shown in figures. 
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I. INTRODUCTION 

The primary objective of the paper is to present analytical approach for finding solution to the plane problems in 

terms of stresses. And further to gain an effective solution and a better understanding of thermal stresses in thin 

rectangular plate due to partially distributed heat supply. The direct problem of thermoelasticity in a rectangular 

plate under thermal shock was studied by Tanigawa and Komatsubara (1997) [10], Vihak et al., (1998) [12] and 

Adams and Bert (1999) [1]. The inverse steady state thermoelastic problem of a thin rectangular plate was studied 

by Durge and Khobragade (2003) [2] to determine the temperature displacement function and thermal stresses at the 

boundary by the application of finite Fourier sine transform technique. The steady-state thermal stresses in a circular 
plate subjected to an ax symmetric temperature distribution on the upper face with zero temperature on the lower 

face and the circular edge respectively was determined by Nowacki (1957) [6]. Quasi-static thermal stresses in a thin 

circular plate was determined by Roychoudhary [1973] [8] subjected to transient temperature along the 

circumference of circular upper face with lower face is at zero temperature and the fixed circular edge thermally 

insulated. Transient thermoelastic-plastic bending problems of a circular plate has discussed by Ishihara, Noda and 

Tanigawa (1997) [4]. Jha et al [2012] [17] studied Heat Treatment for 16 MnCr5 Material. A method of direct 

integration for determination of stresses and displacements within the frame-work of elasticity and thermoelasticity 

problems in terms of stresses proposed by Vihak et al., (1995, 1998, 1999, 2000) [13-16]. 

To the author’s knowledge, work on three dimensional inverse transient thermoelastic problem of a thin rectangular 

plate with given third kind boundary conditions has not been yet reported. 

In the present paper, an attempt has been made to determine the temperature, displacement and thermal stress at any 

point of a thin rectangular plate occupying the region :),,({ 3RzyxD ∈=  ,axa ≤≤− ,byb ≤≤−  }0 hz ≤≤ with 

known boundary conditions. Here the Marchi-Fasulo transform and the Laplace transform techniques have been 
used to find the solution of the problem. 

II. STATEMENT OF THE PROBLEM 

Consider a thin rectangular plate occupying the space :),,({ 3RzyxD ∈=  ,axa ≤≤− ,byb ≤≤−  }0 hz ≤≤ . The 

displacement components zyx uuu ,,  in the yx,  and z  direction respectively are in the integral form as 
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where E, ν and α are the Young modulus, the Poisson ratio and the linear coefficient of thermal expansion of the 

material of the plate respectively, ),,,( tzyxU  is the Airy stress function which satisfies the differential equation 
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Here ),,,( tzyxT  denotes the temperature of thin rectangular plate satisfying the following differential equation 
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and k is the thermal diffusivity of the material subject to initial conditions 

0),,,( =tzyxT  (6) 

The boundary conditions are 
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The stresses components in terms of ),,,( tzyxU are given by 
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The equations (1) to (15) constitute the mathematical formulation of the problem under consideration. 

III. SOLUTION OF THE PROBLEM 

By applying the finite Marchi-Fasulo transform two times to equation (5) to (12), and then their inversion, we obtain 
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where  
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Here ),,( tnmf  and ),,( tnmg  denote the Marchi-Fasulo transform of ),,( tymf  and ),,( tymg  respectively. 

),,( tymf , ),,( tymg  denote the finite Marchi-Fasulo transform of ),,( tyxf  and ),,( tyxg  respectively. 
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Equation (16) is the desired solution of the given problem with ,143 =β=β  ,33 k=α 44 k=α . 

IV. DETERMINATION OF THE AIRY STRESS FUNCTION 

Substituting the values of T(x, y, z, t) from equation (16) in equation (4), one obtains 
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V. DETERMINATIONS OF DISPLACEMENT COMPONENTS 

Substituting the values of (17) in the equation (1) to (3), one obtains 
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VI. DETERMINATION OF THE STRESS FUNCTION 

Substituting the values of (17) in the equation (13) to (15), one obtains 
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VII. SPECIAL CASE AND NUMERICAL RESULT 

Setting, ( )( ) ( ) ( ) ( ) ,1),,(
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VIII. MATERIAL PROPERTIES 

The numerical calculation has been carried out for an Aluminum (Pure) rectangular plate with the material properties 
as, 
Density ρ

 
= 169 lb/ft3 

Specific heat  = 0.208 Btu/ lb0F 

Thermal conductivity k   = 117 Btu/(hr.ft0F) 

Thermal diffusivity α  = 3.33 ft2/hr 

Poisson ratio ν   = 0.35 

Coefficient of linear thermal expansion tα
 

= 12.84 F11084.12 6−× 1/F 

Lame constant µ   = 26.67 

Young’s Modulus of elasticity E   =70GPa 

IX. GRAPHICAL ANALYSES 

 

Fig. 1. T(x, y, z, t) versus t for different values of x. 

From the plotted graph between obtained temperatures versus t for different values of x, it is observed that as t vary 
from 1 to 3 seconds temperature decreases gradually and after time t=3 it becomes stable for different values of x, or 
we can say that as x increases, the temperature gradually decreases due to partially distributed heat supply. 
The following graphs give the characteristic of stresses versus different values of t. 

 

Fig. 2. σxx versus x for different values of t. 
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Fig. 3: σyy versus x for different values of t. 

  

Fig.  4. σzz versus z for different values of t. 

 

Fig. 5. U(x, y, z, t) versus t for different values of z. 
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X. CONCLUSION 

The temperature, displacements, and thermal stresses at any point of the plate have been obtained, when the 
boundary conditions are known with the aid of the finite Marchi-Fasulo transform technique. The expressions are 
represented graphically. The results are obtained in the form of infinite series. It is observed that as x increases, the 
temperature gradually decreases. Any particular case of special interest can be derived by assigning suitable values 
to the parameters and functions in the expressions. 
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