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ABSTRACT: In this paper, an attempt has been made to investigate three dimensional transient
thermoelastic problem of a thin rectangular plate due to partially distributed heat supply to determine
temperature distribution, displacement and thermal stresses with the known boundary and initial conditions.
The solutions are obtained by applying the Marchi-Fasulo transform and the Laplace transform techniques.
The results are obtained in series form in terms of Bessel’s functions. Some numerical results for the
temperature change, the displacement, and the stress distributions are shown in figures.
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I. INTRODUCTION

The primary objective of the paper is to present analytical approach for finding solution to the plane problems in
terms of stresses. And further to gain an effective solution and a better understanding of thermal stresses in thin
rectangular plate due to partially distributed heat supply. The direct problem of thermoelasticity in a rectangular
plate under thermal shock was studied by Tanigawa and Komatsubara (1997) [10], Vihak et al., (1998) [12] and
Adams and Bert (1999) [1]. The inverse steady state thermoelastic problem of a thin rectangular plate was studied
by Durge and Khobragade (2003) [2] to determine the temperature displacement function and thermal stresses at the
boundary by the application of finite Fourier sine transform technique. The steady-state thermal stresses in a circular
plate subjected to an ax symmetric temperature distribution on the upper face with zero temperature on the lower
face and the circular edge respectively was determined by Nowacki (1957) [6]. Quasi-static thermal stresses in a thin
circular plate was determined by Roychoudhary [1973] [8] subjected to transient temperature along the
circumference of circular upper face with lower face is at zero temperature and the fixed circular edge thermally
insulated. Transient thermoelastic-plastic bending problems of a circular plate has discussed by Ishihara, Noda and
Tanigawa (1997) [4]. Jha et al [2012] [17] studied Heat Treatment for 16 MnCr5 Material. A method of direct
integration for determination of stresses and displacements within the frame-work of elasticity and thermoelasticity
problems in terms of stresses proposed by Vihak er al., (1995, 1998, 1999, 2000) [13-16].

To the author’s knowledge, work on three dimensional inverse transient thermoelastic problem of a thin rectangular
plate with given third kind boundary conditions has not been yet reported.

In the present paper, an attempt has been made to determine the temperature, displacement and thermal stress at any
point of a thin rectangular plate occupying the region D ={(x,y,z)€ R*: —a<x<a, -b< y<b, 0<z<h} with
known boundary conditions. Here the Marchi-Fasulo transform and the Laplace transform techniques have been
used to find the solution of the problem.

II. STATEMENT OF THE PROBLEM

Consider a thin rectangular plate occupying the space D ={(x,y,z)€ R>: —a<x<a, -b<y<b, 0<z<h}. The

displacement components u,u,,u, inthe x, y and z direction respectively are in the integral form as
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where E, Vand oare the Young modulus, the Poisson ratio and the linear coefficient of thermal expansion of the
material of the plate respectively, U(x, y,z,t) is the Airy stress function which satisfies the differential equation
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Here T'(x,y,z,t) denotes the temperature of thin rectangular plate satisfying the following differential equation
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and k is the thermal diffusivity of the material subject to initial conditions
T(x,y,2,1)=0 (©6)
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The stresses components in terms of U (x, y, z,t) are given by
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The equations (1) to (15) constitute the mathematical formulation of the problem under consideration.
II1. SOLUTION OF THE PROBLEM

By applying the finite Marchi-Fasulo transform two times to equation (5) to (12), and then their inversion, we obtain
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Here ?(m,n,t) and ;(m,n,t) denote the Marchi-Fasulo transform of ?(m, y,t) and g(m, y,t) respectively.

?(m, Y1), g(m, y,t) denote the finite Marchi-Fasulo transform of f(x,y,#) and g(x,y,r) respectively.
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Equation (16) is the desired solution of the given problem withB; =B, =1, &, =k,, o, =k, .
IV. DETERMINATION OF THE AIRY STRESS FUNCTION

Substituting the values of T(x, y, z, t) from equation (16) in equation (4), one obtains
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V. DETERMINATIONS OF DISPLACEMENT COMPONENTS
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Substituting the values of (17) in the equation (1) to (3), one obtains
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VI. DETERMINATION OF THE STRESS FUNCTION

Substituting the values of (17) in the equation (13) to (15), one obtains

o OBk = (P AW [ 1, 2} Q@0 =02V (1)
xx 2 }\‘ I»Ln 2 n am2+an2_i2 (21)

C m,n=1 m c
c

L20EkE = (B, )( B —an2—(l%)2
n? et A W, (coslnj dm2+dn2+(l%)2

5 _GEk = [Pm(x)][Pn(y)][L_amz} 01 (DY () =0, (DY (1)

w 2 2
c? ma=tl A W, c a+a 21
etk @)

_(E)Z_a :
h " |:T]1(Z)\V3(f)—n2(2)\lf4(f)}

m

20Ekn = (P, AW !
+ z
h? ma=t A, A, J\cosin

o, =2Ek = (Pmu)J[Pn(y)J[_amz_anz[¢1<z)wl<r)—¢z<z)wz<r)]

1+ (Cl%)z

2 2 2
¢ mn=t( A Ky a,” +a, —%2

m

(23)

J20Ekn = (R() p,,,(ﬂ( ! ) —a,’-a,’ M@V =M, (W, (1)
n2 o Lma=t W, A, Ncosin 1+(cl%)z



Kumar and Khobragade 229
VII. SPECIAL CASE AND NUMERICAL RESULT

Setting, f(x,y,t)= (l—e_t Xx+ al(x—a)l(y+bf(y-b),
g == frraP (e-af (v 6] (s-bF "
>

h
in the equation (3.1), we obtain

reneo= £ 5 5 104 B0 A9 ey

m=ln=11=1 )Lm n

« { a,f cos? (a,)—cos(a,)sin(a, )}

a=0.75, k=0.86, b=0.75, h=0.25, t=1

24)

2

an

VIII. MATERIAL PROPERTIES

The numerical calculation has been carried out for an Aluminum (Pure) rectangular plate with the material properties
as,

Density p =169 Ib/ft3

Specific heat =0.208 Btu/ IbOF

Thermal conductivity k& = 117 Btu/(hr.ftOF)

Thermal diffusivity o =3.33 ft2/hr

Poisson ratio v =0.35

Coefficient of linear thermal expansion o, =12.84 12.84x107° 1/F 1/F

Lame constant =26.67

Young’s Modulus of elasticity E =70GPa

IX. GRAPHICAL ANALYSES
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Fig. 1. T(x, y, z, t) versus t for different values of x.

From the plotted graph between obtained temperatures versus t for different values of x, it is observed that as t vary
from 1 to 3 seconds temperature decreases gradually and after time t=3 it becomes stable for different values of x, or
we can say that as x increases, the temperature gradually decreases due to partially distributed heat supply.

The following graphs give the characteristic of stresses versus different values of t.
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Fig. 2. o, versus x for different values of t.



Kumar and Khobragade 230

0 T T
. . b
01 1 1.5
GW
-2
0.3 o,
NN
0.5
-0.7
~—
o N /4
0o t=1.5 —%J,//
' t=2 =5
-1
Fig. 3: o,, versus x for different values of t.
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Fig. 4. o,, versus z for different values of t.
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Fig. 5. U(x, y, z, t) versus t for different values of z.
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X. CONCLUSION

The temperature, displacements, and thermal stresses at any point of the plate have been obtained, when the
boundary conditions are known with the aid of the finite Marchi-Fasulo transform technique. The expressions are
represented graphically. The results are obtained in the form of infinite series. It is observed that as x increases, the
temperature gradually decreases. Any particular case of special interest can be derived by assigning suitable values
to the parameters and functions in the expressions.
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